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J. Phys. A: Math. Gen. 13 (1980) 1737-1740. Printed in Great Britain 

Recursive calculation of axially symmetric statiomary 
Einstein fields 

6 Neugebauer 
Sektion Physik der Friedrich-Schiller-Universitat, Max-Wiea-Platz 1, DDK-69 Jena, 
DDR 

Received 26 September 1979, in final form 4 January 1980 

Abstract. A simple recursion formula is presented for calculating stationary axisymmetric 
(asymptotically flat) Einstein fields with any number of constants. It generates Kerr 
(Schwarzschild) particles from the vacuum (Minkowski space), and stationary asymptotic- 
ally flat solutions from static ones. 

In a previous Letter (Neugebauer 1979) it was shown that Backlund transformations 
can be used to generate stationary axisymmetric gravitational fields with any number of 
constants. The point is that the Backlund transformation method essentially involves 
algebraic manipulations. In this paper the algebraic procedure is reduced to a simple 
recursion formula, which, working as a nonlinear creation operator, generates, from a 
given solution, new gravitational fields with additional parameters. For instance, 
applied to the flat Minkowski space (the 'vacuum') it creates a Kerr 'particle' (Neuge- 
bauer and Kramer 1980). Within the purely static Weyl class successive applications 
lead from flat space to a superposition of any number of Schwarzschild solutions. 
Furthermore, the recursion formula can be exploited to construct, for each static 
asymptotically flat spacetime, a corresponding stationary asymptotically flat spacetime. 

Consider the system of total differential equations 

d$=  (f+g)-1($dgfXy1/2g,l dx'+Xy-"Zg,,dx2), 

dX = (f-tg)-'(X df+ dx' f $iy-1/2f,2 dx2), (1) 

d y =  W-'(y-l)(yW,1 dx '+ W,2dx2) 

for the potentials $(xl, x2), ~ ( x ' ,  x 2 ) ,  y(x', x 2 ) .  It is completely integrable, iff, g, W 
are solutions of the complexified Ernst equations 

( Wf, 1192 + ( Wf,,Z), 1 = 4 W( f + gj- ' f ,  1 f 7 2 r  

(Wg,1),2+(Wg,z),1= 4w(f+g)-'g,,g,2, (2) 

w,1,2 = 0. 
Gravitational fields are special solutions of (2) with f = g, W = W and f = x 1  = p + iz, 
where p and z are cylindrical coordinates. A bar denotes complex conjugation. 

Let f ,  go, Wo be a known solution of (2). Using (1) and following the diagram 

(P, go, WO) 3 w:, x:, ?a + ($!?I, xt, rL)  + U', g', W') (3) 
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calculate a countable set of potentials $E, x:, y :  ( k = , l , 2 , 3 . .  . )  with different 
integration constants indicated by the index k. Then the recursion formulae 

0 0 1/2 1 - Yi+r  
0 9  yo= 0 1, A ; = (  0 ) y: l  - Y i + k + l  

Yi+l 1 - Y i + k + l  
(4) 

implicitly define new potentials $f,, x i ,  y f ,  from which new solutions f l ,  g', W' of ( 2 )  
can be derived (1 indicates the number of iterations). It is not hard to perform this last 
step of (3). Via recursion formula (4) the potentials $f,, x,, are functionals of yl+,:  
$f , {y?+,} ,  xm{y1+,}.  Let us choose the integration constant in y?+, in such a way that 
yl+, = y 1  and therefore y m  = y l+ , /y l  = 1. For this special value of y f ,  we obtain 
special values $f,{ y f ,  = l}, x m {  y m  = 1) of the potentials I,&, x,. Consider the first and 
second equations of (l) ,  which link the potentials $f,, xf, with the corresponding Ernst 
functions. Setting y f ,  = 1 in these equations and integrating them we find the wanted 
connection 

0 

i o  
0 0 1 0 0  

1 1 

( 5 )  

where cy, and pf, are integration constants. (Note that the Ernst functions of a fixed 
recursion order 1 do not depend on a lower index m. This follows from the recursion 
formula and the fact that initial potentials $:, x: with different values of the index k are 
calculated from the same Ernst potentials go, p.) The decoupled field W' can explicitly 
be calculated from WO. (Note that generally WO = A(p + iz) + A(p +iz), y: = 
(1 + iLkA)(l - iLkA)-', with Lk real constants, hold.) Algebraic recursion formulae for 
the other metric coefficients are also available. 

The algorithm (3) immediately results from the Backlund transformation theory 
outlined in the previous paper. Indeed, combining the $-x equations in (1) one obtains 
the total Riccati equation for a = - y 1 / 2 ~ x - 1  used there. The recursion formula (4) is a 
consequence of the algebraic a - y  transformation formalism which was made in a 
system with the help of a graph technique. 

As a first example we apply the procedure (3) to the flat space solution p = go = 1, 
WO= Ix '+f l Im cos # J + ~ X ' I - ~  ( x ' = p + i z ;  m, #J integration constants) and chpose as 
solutions of (1) the potentials 

I 1  1 1 1  $!n{~!n=1}=amg + P m ,  Xm{Ym= 1I=a!d-~!m 
I 

0 0  *; = -x; = -e -14 

, m c o s + + i 2  m cos#J+ix'  o ~ + i ~ i T  
Y3 = y2- 

1-iKx" 

$: = e''+, $; = $3  = X I  = 1, 

(6) y1= Y2 Y2 = .7' 

After a double step in (4) we put K = 0 ( y ?  = 1). Then according to ( 5 )  a possible choice 
is 

m cos 4- ix"  m cos #J-ix I 

f = f' = x:{y? = 1) = (b:{y: = 1) (cy; = 1, p: = O), 
and we have 

eidrl + e-"ro - 2m cos #J 
el+rl + e+ro + 2m cos 4 ' 

f =  . (7) 
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where rl = / m  cos + + z - ipl and ro = Im cos + - z + ipl. This is the Kerr solution with 
the mass m and the rotation parameter 1 = m cos + in Weyl coordinates {p, 2) (cf 
Neugebauer and Kramer 1980). The infinite-parameter group K used by Kinnersley et 
a1 is a subgroup of the Backlund transformation group P introduced in our previous 
paper. The application of symmetry operations of K yields the extreme Kerr solution 
(Hoenselaers eta1 1979). It should be remarked that Herlt (1978) was able to generate 
the Kerr solution from a complex van Stockum solution. 

The choice +: = 1, x: = (-l)ktl ensures that the solutions generated from the flat 
space solution p = go = 1 are static. After 2 N  iteration steps we obtain a (real) Ernst 
potential f” = +;N = x:”, which describes a superposition of N Schwarzschild masses 
mk ( k  = 1 , 2  . . . N )  distributed along the z axis. This result seems to coincide with the 
static multi-soliton solution of Belinsky and Zakharov (1979). (The two-soliton ansafz 
and the first recursion double step lead to the Kerr solution.) The superposition of two 
Kerr solutions will be published elsewhere (Kramer and Neugebauer 1980). If f, go, 
WO is a (static) Weyl solution (f = go = F), the integrals of (1) are easy to find. This 
holds for the Papapetrou class and van Stockum class (go = 0) too (Neugebauer 1979). 
Starting with an arbitrary static solution and calculating t,b:, x: we are led to the 
stationary solution 

ABrl + ABro - 2ABm cos + 
A C r l + A C r o + 2 A c m  cos 4 ’  

f = -  - 

where 

A = cos(+ - iol) - i sin(+ + D1) ,  

B = cos(& - i a )  - i sin(&+ + iQ), 

c = i sin(&+ - i a )  - cos(++ + i@). 
(9) 

The symbols ro, r l ,  m and + were explained in the first example. 

harmonic function @(xl, x 2  = 2) by means of the Backlund transformation 
The real function a1(x1, x z  = 7) (x’ = p +iz) follows from the (real) axisymmetric 

As special cases f contains the Kerr solution (a = cP1 = 0; cf (7)), any static solution 
(m = 0, + = 0), a special Papapetrou solution ( m  = 0), and the superposition of any 
static solution e’* with the Schwarzschild solution (+ = 0). Consider the static case 
(+ = 0). Because each of the gravitational potentials of isolated sources consists of a 
mass term and higher multipoles, we can build up any wanted static field from the mass 
m of the Schwarzschild solution and correcting higher multipoles of a. In this way we 
avoid NUT-like singularities and obtain for each static asymptotically flat solution a 
corresponding stationary asymptotically flat solution (8). 

The recursion formula (4) solves the algebraic problem of the Backlund trans- 
formation theory of axisymmetric stationary gravitational fields. Since the analytic 
problem of determining the initial values +:, x;, y; is solvable for the large Weyl class 
(Neugebauer 1979), the successively calculated solutions f‘, g‘, W’ ( I  = 2, 4, 6 ,  . . . ) 
involve an arbitrary harmonic function as well as an arbitrary number of integration 
constants. What remains to be done is to adapt the countable set of integration 
constants in +:, ,y:, y: ( k  = 1,2,  3, . . . ) to special physical problems. The examples 



1740 G Neugebauer 

given confirm our belief-in which we agree with Hoenselaers et ab (1979)-that 
harmonic function plus integration constants are sufficient to characterise the mass 
distribution and the angular momentum distribution of an arbitrary axisymmetric 
stationary asymptotically flat Einstein field. 

I am greatly indebted to my colleagues Drs Kramer and Herlt for many interesting 
discussions. 

Nore added in proof. fn the meantime I have found the solution of the recursion formulae (4) for an arbitrary 
number of recursion steps. This solution leads to a simple determinant expression for the Ernst function f = g 
(Neugebauer G 1980 J. Phys. A:  Math. Gen. 13 L19-21. Note that there is a misprint: equation (7) should 
read yo= 1, a,)= -fo/fo.) At present the determinant expression seems to be the most comprehensive 
(explicitly given) solution describing a spinning mass distribution. 
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